### Jarednielsen / speech2phone Public

Semi-supervised machine transcription of spoken audio into phonemes (speech units).

| <b>م<u>ا</u>ته</b> MIT li  | cense                                                         |                  |                                   |            |              |        |
|----------------------------|---------------------------------------------------------------|------------------|-----------------------------------|------------|--------------|--------|
| ☆ 1 star                   | ម្លូ 0 forks                                                  |                  |                                   |            |              |        |
| ☆ Star                     |                                                               | •                | <ul> <li>Notifications</li> </ul> |            |              |        |
| <> Code                    | e 🛈 Issues ট্বি Pull requests                                 | Actions          | Projects                          | 🕮 Wiki     | (!) Security | 🗠 Insi |
| ះ mas                      | ster 👻                                                        |                  |                                   |            |              |        |
|                            |                                                               |                  |                                   |            | ť            | 81     |
|                            |                                                               | View code        |                                   |            |              |        |
|                            |                                                               |                  |                                   |            |              |        |
| i≣ Re                      | EADME.md                                                      |                  |                                   |            |              |        |
| <i>е</i> <b>sp</b><br>е то | eech2phone                                                    |                  |                                   |            |              |        |
| Mark                       | when you've finished them.                                    |                  |                                   |            |              |        |
| •                          | (Kyle) Preprocessor caching V                                 |                  |                                   |            |              |        |
| •                          | (Kyle) Preprocessor returns cate                              | egorical distrik | oution V                          |            |              |        |
| •                          | (Kyle) Embedding baseline                                     |                  |                                   |            |              |        |
| ٠                          | (Seong) Python <i>scripts</i> (not note                       | books) that u    | se grid search                    | n, mag and | save the plo | ts     |
|                            | <pre>in /visualizations for the follo     Random Forest</pre> | owing models     | .: V                              |            |              |        |
|                            | <ul> <li>XGBoost</li> </ul>                                   |                  |                                   |            |              |        |
|                            | <ul> <li>Gaussian Discriminant Ana</li> </ul>                 | lysis            |                                   |            |              |        |

- Naive Bayes
- Logistic Regression
- Principal Component Analysis

- Support Vector Machine
- K-Nearest Neighbors
- K-Means
- Gaussian Mixture Model
- (Jared) Semi-supervised learning *scripts* (not notebooks) with fully-connected layer and 1-D CNN
  - Self-training
  - Co-training
  - Pi-model
  - Label propagation
  - Label gradient alignment
  - Using your model against itself
- (anyone)

## **Provide Structure**

- *embedding/*: Learned embeddings, applied after preprocessing. For example, PCA.
- *experiments/class/*: *mag* experiments on classification (phoneme boundaries given to model).
- *experiments/seg\_class/*: *mag* experiments on segmentation and classification (phoneme boundaries produced by model).
- models/: custom model classes we've built.
- *preprocessing/*: Loads data from files, caches it, and returns NumPy arrays.
- results/: Assorted images/ plots that are interesting and could be useful in the final report. For example, a PCA .png
- *temp\_{jared, kyle, seong}/*: The equivalent of branches. Put work-in-progress here, and bring it out into the main system when it's done.
- visualizations/: Examples of how to plot a Mel spectrogram, etc.

## 

- Run pytest test\_main.py.
- Add additional tests there. We'll use a single test module for now. pytest uses simple assert statements.

### 

- The directory containing speech2phone must be on the environment variable PYTHONPATH.
- To append it, run export PYTHONPATH="\${PYTHONPATH}:/my/other/path".
- For example, if I have Users/jarednielsen/Desktop/speech2phone, then I must have Users/jarednielsen/Desktop On my PYTHONPATH.
- If that doesn't work because of conda, Add a .pth file to the directory \$HOME/path/to/anaconda/lib/pythonX.X/site-packages. This can be named anything (it just must end with .pth). A .pth file is just a newline-separated listing of the full path-names of directories that will be added to your path on Python startup. For example, /anaconda3/envs/py36/lib/python3.6/site-packages/path.pth has the line /Users/jarednielsen/Desktop in it.
- Use absolute imports everywhere. For example, import speech2phone Or import speech2phone.preprocessing.
- See speech2phone/\_\_init\_\_.py and speech2phone/preprocessing/\_\_init\_\_.py for
  examples of how to set up subpackages.
- /preprocessing applies classic data processing methods (i.e. not learned) to the data, while /embedding applies learned methods. For example, Mel spectrogram stuff should be handled in /preprocessing.

## 

### Approaches

- Recurrent network
- Merging (like piecewise linear regression) with the criterion over a metric using dynamic time-warping

### /embedding

Options for embedding include:

- spectrum
- cepstrum
- single linear layer (we could try this or just SGD)
- more complex learned network
- autoencoder
- UMAP
- t-SNE

These will all be specifiable by importing from the embedding module. The spectrum works pretty well as an embedding space, as we found by doing some PCA (see /visualizations/pca\_embedding.png ). I think we'll use it as a baseline.

# P Things to try (add ideas here)

- trinemes
- dynamic time-warping
- reapply models to TIMIT to quantify results (quantified semi-supervised learning)
- use Mel spectrogram but give some time dependence (80 freq x 10 time)
- using the activations from the neural network to try to predict the speaker, and then consider the ethical implications (a la "voiceprint" technology)

#### Releases

No releases published

### Packages

No packages published

#### Contributors 3



#### Languages

Jupyter Notebook 93.4%
 Python 6.6%