
kylrth / slurm_gen Public

Makes it easy to generate and handle arbitrarily-sized datasets on a SLURM HPC environment.

0
stars

0
forks

View code

SLURM_gen
This package automates the process of generating large amounts of data, providing a
clean interface between your simulation and the SLURM workload manager. It also
manages the datasets you choose to generate, and allows easy access to cached
simulations that load quickly. If you need more data than you have, SLURM_gen lets you
know how many more samples need to be generated, and how much compute time it will
take.

Installation

Usage

SLURM_gen provides a simple command line interface to

generate data samples,
assign those samples to a particular dataset name, like 'train' or 'test', and

Star Notifications

Code Issues Pull requests Actions Projects Wiki Security Insig

master

76

pip install -e . # don't forget the period

README.md

https://github.com/kylrth
https://github.com/kylrth/slurm_gen
https://github.com/kylrth/slurm_gen/stargazers
https://github.com/kylrth/slurm_gen/network/members
https://github.com/login?return_to=%2Fkylrth%2Fslurm_gen
https://github.com/login?return_to=%2Fkylrth%2Fslurm_gen
https://github.com/kylrth/slurm_gen
https://github.com/kylrth/slurm_gen/issues
https://github.com/kylrth/slurm_gen/pulls
https://github.com/kylrth/slurm_gen/actions
https://github.com/kylrth/slurm_gen/projects?type=beta
https://github.com/kylrth/slurm_gen/wiki
https://github.com/kylrth/slurm_gen/security
https://github.com/kylrth/slurm_gen/pulse
https://github.com/kylrth/slurm_gen/commits/master

track the number of samples generated for various datasets and parameters.

You can define your own datasets simply by writing a function that outputs feature-label
pairs. Define that function in a file called datasets.py , and point SLURM_gen at the
directory containing that file.

Example

Here we'll show how to define a simple dataset, generate some samples, and access
them.

Define the generator

Start by using the DefaultParamObject class and the @dataset decorator to define a
new dataset. These definitions should be placed in a Python file called datasets.py .

example/datasets.py

import math

import random

from slurm_gen import DefaultParamObject, dataset

class NoisySineParams(DefaultParamObject):

 """Attributes defining parameters to the noisy_sine experiment."""

 # leftmost allowed value for x

 left = -1

 # rightmost allowed value for x

 right = 1

 # standard deviation of noise to add to sin(x)

 std_dev = 0.1

we can specify extra SLURM batch parameters here

options = "--qos=test"

here we also tell SLURM_gen to request 1GB of memory and save every 50 sample

@dataset(NoisySineParams, "1GB", 50, options)
def noisy_sine(size, params):

 """Create samples from a noisy sine wave.

 Args:
 size (int): number of samples to generate.

The NoisySineParams defines the possible configuration parameters that the generator
can accept, as well as the default values for those parameters. When generating or
accessing samples, we can specify non-default values for any of these parameters.

The @dataset decorator converts noisy_sine into a dataset which can be used by the
slurm_gen.generate module to create cache files containing arbitrary numbers of
samples. We can define as many functions as we like in datasets.py , and all those
marked with @dataset will be usable in SLURM_gen.

Generate samples

Now that we've defined the generator, we can generate some samples for that dataset
like this:

In the first example above, we submitted 3 SLURM jobs, splitting the 1000 samples
evenly among them. Since we had no samples for this dataset yet, we had to provide --
time . In the second example, we omitted the --time argument, and a time duration
three standard deviations above the mean of previous runs was used, adapted to the
number of samples per job. In the second example we also set some configuration
parameters to non-default values.

Managing samples

We can list the available samples from the command line:

The output will look like this:

 params (NoisySineParams): parameters to the experiment.

 Yields:
 (float): x-value.

 (float): y-value plus noise.

 """

 for _ in range(size):
 x = random.uniform(params.left, params.right)

 yield x, math.sin(x) + random.normalvariate(mu=0, sigma=params.std_dev)

cd example/ # the directory containing datasets.py
python -m slurm_gen.generate noisy_sine -n 1000 --njobs 3 --time "10"

python -m slurm_gen.generate noisy_sine -n 1000 --njobs 3 --params "{'left': 0,

cd example/

python -m slurm_gen.list

We can see the samples for the "noisy_sine" dataset divided into sets by the parameters
given.

If we want to move some of those samples into a group labeled "train", we can do so like
this:

The -p argument identifies which parameter set to use. You can also use a dictionary of
values as the identifier, by passing a string that will be evaluated as a dictionary.

After the move, the output of python -m slurm_gen.list will be

Once you've moved samples into a labeled group, you can't move them back. This is to
avoid accidentally mixing samples between groups, possibly inflating the accuracy of
machine learning models.

Preprocessing samples

You may have noticed that slurm_gen.list noted 700 "unprocessed" samples. Once
samples are in a group, you can apply preprocessors to them. Preprocessors must be
defined in the same datasets.py file. To continue the example, add the following
preprocessor for our noisy_sine dataset.

noisy_sine:

Param set #0:
 left#-1|right#1| raw: 1000

 std_dev#0.1|

Param set #1:

 left#0|right#1| raw: 1000
 std_dev#0.5|

cd example/

python -m slurm_gen.move noisy_sine 700 train -p 0

noisy_sine:

Param set #0:

 left#-1|right#1| raw: 300
 std_dev#0.1| train: unprocessed(700)

Param set #1:

 left#0|right#1| raw: 1000
 std_dev#0.5|

Note that the preprocessor is defined for one particular dataset. If the same preprocessor
needs to be defined for multiple datasets, just add the decorators one after the other.

Preprocess some samples from 'train' by running the following command:

After the data is preprocessed, the output of python -m slurm_gen.list will be

Accessing the samples

To access the samples within Python, use the get_dataset function:

Object hierarchy

You saw in the example above that we accessed the data by indexing into the Cache
object. Here we describe the object hierarchy used by SLURM_gen within the Python
environment.

added to datasets.py

@noisy_sine.preprocessor
def square_both(X, y):

 """Square both the inputs and the outputs."""

 return [ex ** 2 for ex in X], [wai ** 2 for wai in y]

python -m slurm_gen.preprocess noisy_sine square_both train 600 -p 0

noisy_sine:
Param set #0:

 left#-1|right#1| raw: 300

 | train: unprocessed(700)
 | : square_both(600)

Param set #1:

 left#0|right#1| raw: 1000

 std_dev#0.5|

from slurm_gen import Cache

load those 700 samples as a training set

X, y = Cache("./example/")["noisy_sine"][0]["train"].get(700)

Datasets can be indexed from a Cache object in the following ways:

by name, with a string (e.g. "noisy_sine")
by number, in order of declaration (e.g. 0)
by the actual dataset imported from datasets.py (e.g. from datasets import
noisy_sine; Cache()[noisy_sine])

ParamSets can be indexed from a Dataset object in the following ways:

by number, as printed with python -m slurm_gen.list

by the string used as the directory name for the parameter set (e.g.
"left#-1|right#1|std_dev#0.1")
by the dict of parameter values (e.g. {"left": -1, "right": -1, "std_dev": 0.1})
by a DefaultParamObject (e.g. NoisySineParams(left=-1, right=-1,
std_dev=0.1))

Groups can be indexed from a ParamSet object only by the string used as the name for
the group (e.g. "train"). The Group object has a .get() method that unprocessed
samples associated with the group. By default it returns all of them, but you can specify
how many you want as a parameter.

PreprocessedData objects can be indexed from a Group object in the following ways:

by preprocessor name (e.g. "square_both")
by the actual preprocessor imported from datasets.py (e.g. from datasets import
square_both; group[square_both])

The PreprocessedData object has a .get() method implementing the same
functionality as that of Group .

TODO

Be more efficient with keeping track of the sizes of the datasets.

Cache

 '- Dataset
 '- ParamSet

 '- Group

 :- raw data, accessed with `.get()`

 '- PreprocessedData
 '- preprocessed samples, accessed with `.get()`

Be able to preprocess on a SLURM job.

Releases
 1

v0.2 Latest
on Feb 6, 2020

Packages

No packages published

Languages

Python 100.0%

https://github.com/kylrth/slurm_gen/releases
https://github.com/kylrth/slurm_gen/releases/tag/v0.2
https://github.com/users/kylrth/packages?repo_name=slurm_gen
https://github.com/kylrth/slurm_gen/search?l=python

