neural-scaling

Deep learning scaling is predictable, empirically

Posted on

This was a paper we presented about in Irina Rish’s neural scaling laws course (IFT6167) in winter 2022. You can view the slides we used here. It’s important to note that in the results for NMT (Figure 1) we would expect the lines in the graph on the left to curve as the capacity of the individual models is exhausted. That’s why the authors fit the curves with an extra constant added.

Read more

Data scaling laws in NMT: the effect of noise and architecture

Posted on

This paper is all about trying a bunch of different changes to the training setup to see what affects the power law exponent over dataset size. Here are some of the answers: encoder-decoder size asymmetry: exponent not affected, but effective model capacity affected architecture (LSTM vs. Transformer): exponent not affected, but effective model capacity affected dataset quality (filtered vs. not): exponent and effective model capacity not effected, losses on smaller datasets affected dataset source (ParaCrawl vs.

Read more

Parallel training of deep networks with local updates

Posted on

This post was created as an assignment in Irina Rish’s neural scaling laws course (IFT6167) in winter 2022. The post contains no summarization, only questions and thoughts. Once I learned how the loss functions worked for each chunk, my first question was whether the earlier chunks were going to be able to learn the low-level features that later chunks would need. Figure 7 seems to show that they do, although their quality apparently decreases with increasingly local updates.

Read more

Learning transferable visual models from natural language supervision (CLIP)

Posted on

This post was created as an assignment in Irina Rish’s neural scaling laws course (IFT6167) in winter 2022. The post contains no summarization, only questions and thoughts. This concept of wide vs. narrow supervision (rather than binary “supervised” and “unsupervised”) is an interesting and flexible way to think about the way these training schemes leverage data. The zero-shot CLIP matches the performance of 4-shot CLIP, which is a surprising result. What do the authors mean when they make this guess about zero-shot’s advantage:

Read more