Installation Guide¶
Supported Platforms¶
The NVIDIA Container Toolkit is available on a variety of Linux distributions and supports different container engines.
Note
As of NVIDIA Container Toolkit 1.7.0
(nvidia-docker2 >= 2.8.0
) support for Jetson plaforms
is included for Ubuntu 18.04 and Ubuntu 20.04 distributions. This means that the installation
instructions provided for these distributions are expected to work on Jetson devices.
Linux Distributions¶
Supported Linux distributions are listed below:
OS Name / Version |
Identifier |
amd64 / x86_64 |
ppc64le |
arm64 / aarch64 |
---|---|---|---|---|
Amazon Linux 2 |
amzn2 |
X |
X |
|
Amazon Linux 2017.09 |
amzn2017.09 |
X |
||
Amazon Linux 2018.03 |
amzn2018.03 |
X |
||
Open Suse/SLES 15.0 |
sles15.0 |
X |
||
Open Suse/SLES 15.x |
sles15.1 |
X |
||
Debian Linux 9 |
debian9 |
X |
||
Debian Linux 10 |
debian10 |
X |
||
Debian Linux 11 |
debian11 |
X |
||
Centos 7 |
centos7 |
X |
X |
|
Centos 8 |
centos8 |
X |
X |
X |
RHEL 7.x (*) |
rhel7.x |
X |
X |
|
RHEL 8.x (*) |
rhel8.x |
X |
X |
X |
Ubuntu 16.04 |
ubuntu16.04 |
X |
X |
|
Ubuntu 18.04 |
ubuntu18.04 |
X |
X |
X |
Ubuntu 20.04 |
ubuntu20.04 |
X |
X |
X |
(*) Minor releases of RHEL 7 and RHEL 8 (i.e. 7.4 -> 7.9 are symlinked to centos7
and 8.0 -> 8.3 are symlinked to centos8
resp.)
Container Runtimes¶
Supported container runtimes are listed below:
OS Name / Version |
amd64 / x86_64 |
ppc64le |
arm64 / aarch64 |
---|---|---|---|
Docker 18.09 |
X |
X |
X |
Docker 19.03 |
X |
X |
X |
Docker 20.10 |
X |
X |
X |
RHEL/CentOS 8 podman |
X |
||
CentOS 8 Docker |
X |
||
RHEL/CentOS 7 Docker |
X |
Note
On Red Hat Enterprise Linux (RHEL) 8, Docker is no longer a supported container runtime. See Building, Running and Managing Containers for more information on the container tools available on the distribution.
Pre-Requisites¶
NVIDIA Drivers¶
Before you get started, make sure you have installed the NVIDIA driver for your Linux distribution. The
recommended way to install drivers is to use the package manager for your distribution but other installer
mechanisms are also available (e.g. by downloading .run
installers from NVIDIA Driver Downloads).
For instructions on using your package manager to install drivers from the official CUDA network repository, follow the steps in this guide.
Platform Requirements¶
The list of prerequisites for running NVIDIA Container Toolkit is described below:
GNU/Linux x86_64 with kernel version > 3.10
Docker >= 19.03 (recommended, but some distributions may include older versions of Docker. The minimum supported version is 1.12)
NVIDIA GPU with Architecture >= Kepler (or compute capability 3.0)
NVIDIA Linux drivers >= 418.81.07 (Note that older driver releases or branches are unsupported.)
Note
Your driver version might limit your CUDA capabilities. Newer NVIDIA drivers are backwards-compatible with CUDA Toolkit versions, but each new version of CUDA requires a minimum driver version. Running a CUDA container requires a machine with at least one CUDA-capable GPU and a driver compatible with the CUDA toolkit version you are using. The machine running the CUDA container only requires the NVIDIA driver, the CUDA toolkit doesn’t have to be installed. The CUDA release notes includes a table of the minimum driver and CUDA Toolkit versions.
Docker¶
Getting Started¶
For installing Docker CE, follow the official instructions for your supported Linux distribution. For convenience, the documentation below includes instructions on installing Docker for various Linux distributions.
Warning
If you are migrating fron nvidia-docker
1.0, then follow the instructions in the Migration from nvidia-docker 1.0 guide.
Installing on Ubuntu and Debian¶
The following steps can be used to setup NVIDIA Container Toolkit on Ubuntu LTS - 16.04, 18.04, 20.4 and Debian - Stretch, Buster distributions.
Setting up Docker¶
Docker-CE on Ubuntu can be setup using Docker’s official convenience script:
$ curl https://get.docker.com | sh \
&& sudo systemctl --now enable docker
See also
Follow the official instructions for more details and post-install actions.
Setting up NVIDIA Container Toolkit¶
Setup the package repository and the GPG key:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
Note
To get access to experimental
features and access to release candidates, you may want to add the experimental
branch to the repository listing:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/experimental/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
Note
For version of the NVIDIA Container Toolkit prior to 1.6.0
, the nvidia-docker
repository should be used instead of the
libnvidia-container
repositories above.
Note
Note that in some cases the downloaded list file may contain URLs that do not seem to match the expected value of distribution
which is expected
as packages may be used for all compatible distributions.
As an examples:
For
distribution
values ofubuntu20.04
orubuntu22.04
the file will containubuntu18.04
URLsFor a
distribution
value ofdebian11
the file will containdebian10
URLs
Install the nvidia-docker2
package (and dependencies) after updating the package listing:
$ sudo apt-get update
$ sudo apt-get install -y nvidia-docker2
Restart the Docker daemon to complete the installation after setting the default runtime:
$ sudo systemctl restart docker
At this point, a working setup can be tested by running a base CUDA container:
$ sudo docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
This should result in a console output shown below:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Installing on CentOS 7/8¶
The following steps can be used to setup the NVIDIA Container Toolkit on CentOS 7/8.
Setting up Docker on CentOS 7/8¶
Note
If you’re on a cloud instance such as EC2, then the official CentOS images may not include
tools such as iptables
which are required for a successful Docker installation. Try this command to get a more functional VM,
before proceeding with the remaining steps outlined in this document.
$ sudo dnf install -y tar bzip2 make automake gcc gcc-c++ vim pciutils elfutils-libelf-devel libglvnd-devel iptables
Setup the official Docker CE repository:
$ sudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
$ sudo yum-config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
Now you can observe the packages available from the docker-ce repo:
$ sudo dnf repolist -v
$ sudo yum repolist -v
Since CentOS does not support specific versions of containerd.io
packages that are required for newer versions
of Docker-CE, one option is to manually install the containerd.io
package and then proceed to install the docker-ce
packages.
Install the containerd.io
package:
$ sudo dnf install -y https://download.docker.com/linux/centos/7/x86_64/stable/Packages/containerd.io-1.4.3-3.1.el7.x86_64.rpm
$ sudo yum install -y https://download.docker.com/linux/centos/7/x86_64/stable/Packages/containerd.io-1.4.3-3.1.el7.x86_64.rpm
And now install the latest docker-ce
package:
$ sudo dnf install docker-ce -y
$ sudo yum install docker-ce -y
Ensure the Docker service is running with the following command:
$ sudo systemctl --now enable docker
And finally, test your Docker installation by running the hello-world
container:
$ sudo docker run --rm hello-world
This should result in a console output shown below:
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete
Digest: sha256:7f0a9f93b4aa3022c3a4c147a449bf11e0941a1fd0bf4a8e6c9408b2600777c5
Status: Downloaded newer image for hello-world:latest
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/get-started/
Setting up NVIDIA Container Toolkit¶
Setup the repository and the GPG key:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
Note
To get access to experimental
features and access to release candidates, you may want to add the experimental
branch to the repository listing:
$ yum-config-manager --enable libnvidia-container-experimental
Note
For version of the NVIDIA Container Toolkit prior to 1.6.0
, the nvidia-docker
repository should be used instead of the
libnvidia-container
repositories above.
Install the nvidia-docker2
package (and dependencies) after updating the package listing:
$ sudo dnf clean expire-cache --refresh
$ sudo yum clean expire-cache
$ sudo dnf install -y nvidia-docker2
$ sudo yum install -y nvidia-docker2
Restart the Docker daemon to complete the installation after setting the default runtime:
$ sudo systemctl restart docker
At this point, a working setup can be tested by running a base CUDA container:
$ sudo docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
This should result in a console output shown below:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Installing on RHEL 7¶
The following steps can be used to setup the NVIDIA Container Toolkit on RHEL 7.
Setting up Docker on RHEL 7¶
RHEL includes Docker in the Extras
repository. To install Docker on RHEL 7, first enable this repository:
$ sudo subscription-manager repos --enable rhel-7-server-extras-rpms
Docker can then be installed using yum
$ sudo yum install docker -y
See also
More information is available in the KB article.
Ensure the Docker service is running with the following command:
$ sudo systemctl --now enable docker
And finally, test your Docker installation. We can query the version info:
$ sudo docker -v
You should see an output like below:
Docker version 1.13.1, build 64e9980/1.13.1
And run the hello-world
container:
$ sudo docker run --rm hello-world
Giving you the following result:
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/get-started/
Setting up NVIDIA Container Toolkit¶
Setup the repository and the GPG key:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
Note
To get access to experimental
features and access to release candidates, you may want to add the experimental
branch to the repository listing:
$ yum-config-manager --enable libnvidia-container-experimental
Note
For version of the NVIDIA Container Toolkit prior to 1.6.0
, the nvidia-docker
repository should be used instead of the
libnvidia-container
repositories above.
On RHEL 7, install the nvidia-container-toolkit
package (and dependencies) after updating the package listing:
$ sudo yum clean expire-cache
$ sudo yum install nvidia-container-toolkit -y
Note
On POWER (ppc64le
) platforms, the following package should be used: nvidia-container-hook
instead of nvidia-container-toolkit
Restart the Docker daemon to complete the installation after setting the default runtime:
$ sudo systemctl restart docker
At this point, a working setup can be tested by running a base CUDA container:
$ sudo docker run --rm -e NVIDIA_VISIBLE_DEVICES=all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
This should result in a console output shown below:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:00:1E.0 Off | 0 |
| N/A 43C P0 20W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Note
Depending on how your RHEL 7 system is configured with SELinux, you may have to use --security-opt=label=disable
on
the Docker command line to share parts of the host OS that can not be relabeled. Without this option, you may observe this
error when running GPU containers: Failed to initialize NVML: Insufficient Permissions
. However, using this option disables
SELinux separation in the container and the container is executed in an unconfined type. Review the SELinux policies
on your system.
Installing on SUSE 15¶
The following steps can be used to setup the NVIDIA Container Toolkit on SUSE SLES 15 and OpenSUSE Leap 15.
Setting up Docker on SUSE 15¶
To install the latest Docker 19.03 CE release on SUSE 15 (OpenSUSE Leap or SLES), you can use the Virtualization::containers
project.
First, set up the repository:
$ sudo zypper addrepo https://download.opensuse.org/repositories/Virtualization:containers/openSUSE_Leap_15.2/Virtualization:containers.repo \
&& sudo zypper refresh
Install the docker
package:
$ sudo zypper install docker
Ensure the Docker service is running with the following command:
$ sudo systemctl --now enable docker
And finally, test your Docker installation by running the hello-world
container:
$ sudo docker run --rm hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete
Digest: sha256:7f0a9f93b4aa3022c3a4c147a449bf11e0941a1fd0bf4a8e6c9408b2600777c5
Status: Downloaded newer image for hello-world:latest
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/get-started/
Setting up NVIDIA Container Toolkit¶
Note
You may have to set $distribution
variable to opensuse-leap15.1
explicitly when adding the repositories
Setup the repository and refresh the package listings
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& sudo zypper ar https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo
Note
To get access to experimental
features and access to release candidates, you may want to add the experimental
branch to the repository listing:
$ zypper modifyrepo --enable libnvidia-container-experimental
Note
For version of the NVIDIA Container Toolkit prior to 1.6.0
, the nvidia-docker
repository should be used instead of the
libnvidia-container
repositories above.
Install the nvidia-docker2
package (and dependencies) after updating the package listing:
$ sudo zypper refresh
$ sudo zypper install -y nvidia-docker2
Restart the Docker daemon to complete the installation after setting the default runtime:
$ sudo systemctl restart docker
At this point, a working setup can be tested by running a base CUDA container:
$ sudo docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
This should result in a console output shown below:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Installing on Amazon Linux¶
The following steps can be used to setup the NVIDIA Container Toolkit on Amazon Linux 1 and Amazon Linux 2.
Setting up Docker on Amazon Linux¶
Amazon Linux is available on Amazon EC2 instances. For full install instructions, see Docker basics for Amazon ECS.
After launching the official Amazon Linux EC2 image, update the installed packages and install the most recent Docker CE packages:
$ sudo yum update -y
Install the docker
package:
$ sudo amazon-linux-extras install docker
Ensure the Docker service is running with the following command:
$ sudo systemctl --now enable docker
And finally, test your Docker installation by running the hello-world
container:
$ sudo docker run --rm hello-world
This should result in a console output shown below:
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete
Digest: sha256:7f0a9f93b4aa3022c3a4c147a449bf11e0941a1fd0bf4a8e6c9408b2600777c5
Status: Downloaded newer image for hello-world:latest
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/get-started/
Setting up NVIDIA Container Toolkit¶
Setup the repository and the GPG key:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
Note
To get access to experimental
features and access to release candidates, you may want to add the experimental
branch to the repository listing:
$ yum-config-manager --enable libnvidia-container-experimental
Note
For version of the NVIDIA Container Toolkit prior to 1.6.0
, the nvidia-docker
repository should be used instead of the
libnvidia-container
repositories above.
Install the nvidia-docker2
package (and dependencies) after updating the package listing:
$ sudo yum clean expire-cache
Restart the Docker daemon to complete the installation after setting the default runtime:
$ sudo systemctl restart docker
At this point, a working setup can be tested by running a base CUDA container:
$ sudo docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
This should result in a console output shown below:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
containerd¶
Getting Started¶
For installing containerd, follow the official instructions for your supported Linux distribution. For convenience, the documentation below includes instructions on installing containerd for various Linux distributions supported by NVIDIA.
Step 0: Pre-Requisites¶
To install containerd
as the container engine on the system, install some pre-requisite modules:
$ sudo modprobe overlay \
&& sudo modprobe br_netfilter
You can also ensure these are persistent:
$ cat <<EOF | sudo tee /etc/modules-load.d/containerd.conf
overlay
br_netfilter
EOF
Note
If you’re going to use containerd
as a CRI runtime with Kubernetes, configure the sysctl
parameters:
$ cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
EOF
And then apply the params:
$ sudo sysctl --system
Step 1: Install containerd¶
After the pre-requisities, we can proceed with installing containerd for your Linux distribution.
Setup the Docker repository as described here:
Install packages to allow
apt
to use a repository over HTTPS:$ sudo apt-get update
$ sudo apt-get install \ ca-certificates \ curl \ gnupg \ lsb-release
Add the repository GPG key and the repo:
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
$ echo \ "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
Now, install the containerd
package:
$ sudo apt-get update \
&& sudo apt-get install -y containerd.io
Configure containerd
with a default config.toml
configuration file:
$ sudo mkdir -p /etc/containerd \
&& sudo containerd config default | sudo tee /etc/containerd/config.toml
To make use of the NVIDIA Container Runtime, additional configuration is required. The following options should be added to configure
nvidia
as a runtime and use systemd
as the cgroup driver. A patch is provided below:
$ cat <<EOF > containerd-config.patch
--- config.toml.orig 2020-12-18 18:21:41.884984894 +0000
+++ /etc/containerd/config.toml 2020-12-18 18:23:38.137796223 +0000
@@ -94,6 +94,15 @@
privileged_without_host_devices = false
base_runtime_spec = ""
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]
+ SystemdCgroup = true
+ [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia]
+ privileged_without_host_devices = false
+ runtime_engine = ""
+ runtime_root = ""
+ runtime_type = "io.containerd.runc.v1"
+ [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia.options]
+ BinaryName = "/usr/bin/nvidia-container-runtime"
+ SystemdCgroup = true
[plugins."io.containerd.grpc.v1.cri".cni]
bin_dir = "/opt/cni/bin"
conf_dir = "/etc/cni/net.d"
EOF
After apply the configuration patch, restart containerd
:
$ sudo systemctl restart containerd
You can test the installation by using the Docker hello-world
container with the ctr
tool:
$ sudo ctr image pull docker.io/library/hello-world:latest \
&& sudo ctr run --rm -t docker.io/library/hello-world:latest hello-world
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/get-started/
Step 2: Install NVIDIA Container Toolkit¶
After installing containerd, we can proceed to install the NVIDIA Container Toolkit. For containerd
, we need to use
the nvidia-container-toolkit
package. See the architecture overview
for more details on the package hierarchy.
First, setup the package repository and GPG key:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
Now, install the NVIDIA Container Toolkit:
$ sudo apt-get update \
&& sudo apt-get install -y nvidia-container-toolkit
$ sudo dnf clean expire-cache \
&& sudo dnf install -y nvidia-container-toolkit
Note
For version of the NVIDIA Container Toolkit prior to 1.6.0
, the nvidia-docker
repository should be used and the nvidia-container-runtime
package
should be installed instead. This means that the package repositories should be set up as follows:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
The installed packages can be confirmed by running:
$ sudo apt list --installed *nvidia*
Step 3: Testing the Installation¶
Then, we can test a GPU container:
$ sudo ctr image pull docker.io/nvidia/cuda:11.0.3-base-ubuntu20.04
$ sudo ctr run --rm --gpus 0 -t docker.io/nvidia/cuda:11.0.3-base-ubuntu20.04 cuda-11.0.3-base-ubuntu20.04 nvidia-smi
You should see an output similar to the one shown below:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
podman¶
Getting Started¶
For installing podman, follow the official instructions for your supported Linux distribution. For convenience, the documentation below includes instructions on installing podman on RHEL 8.
Step 1: Install podman¶
On RHEL 8, check if the container-tools
module is available:
$ sudo dnf module list | grep container-tools
This should return an output as shown below:
container-tools rhel8 [d] common [d] Most recent (rolling) versions of podman, buildah, skopeo, runc, conmon, runc, conmon, CRIU, Udica, etc as well as dependencies such as container-selinux built and tested together, and updated as frequently as every 12 weeks.
container-tools 1.0 common [d] Stable versions of podman 1.0, buildah 1.5, skopeo 0.1, runc, conmon, CRIU, Udica, etc as well as dependencies such as container-selinux built and tested together, and supported for 24 months.
container-tools 2.0 common [d] Stable versions of podman 1.6, buildah 1.11, skopeo 0.1, runc, conmon, etc as well as dependencies such as container-selinux built and tested together, and supported as documented on the Application Stream lifecycle page.
container-tools rhel8 [d] common [d] Most recent (rolling) versions of podman, buildah, skopeo, runc, conmon, runc, conmon, CRIU, Udica, etc as well as dependencies such as container-selinux built and tested together, and updated as frequently as every 12 weeks.
container-tools 1.0 common [d] Stable versions of podman 1.0, buildah 1.5, skopeo 0.1, runc, conmon, CRIU, Udica, etc as well as dependencies such as container-selinux built and tested together, and supported for 24 months.
container-tools 2.0 common [d] Stable versions of podman 1.6, buildah 1.11, skopeo 0.1, runc, conmon, etc as well as dependencies such as container-selinux built and tested together, and supported as documented on the Application Stream lifecycle page.
Now, proceed to install the container-tools
module, which will install podman
:
$ sudo dnf module install -y container-tools
Once, podman
is installed, check the version:
$ podman version
Version: 2.2.1
API Version: 2
Go Version: go1.14.7
Built: Mon Feb 8 21:19:06 2021
OS/Arch: linux/amd64
Step 2: Install NVIDIA Container Toolkit¶
After installing podman
, we can proceed to install the NVIDIA Container Toolkit. For podman
, we need to use
the nvidia-container-toolkit
package. See the architecture overview
for more details on the package hierarchy.
First, setup the package repository and GPG key:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
Now, install the NVIDIA Container Toolkit:
$ sudo apt-get update \
&& sudo apt-get install -y nvidia-container-toolkit
$ sudo dnf clean expire-cache \
&& sudo dnf install -y nvidia-container-toolkit
Note
For version of the NVIDIA Container Toolkit prior to 1.6.0
, the nvidia-docker
repository should be used and the nvidia-container-runtime
package
should be installed instead. This means that the package repositories should be set up as follows:
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
The installed packages can be confirmed by running:
$ sudo apt list --installed *nvidia*
Step 2.1. Check the installation¶
Once the package installation is complete, ensure that the hook
has been added:
$ cat /usr/share/containers/oci/hooks.d/oci-nvidia-hook.json
{
"version": "1.0.0",
"hook": {
"path": "/usr/bin/nvidia-container-toolkit",
"args": ["nvidia-container-toolkit", "prestart"],
"env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
]
},
"when": {
"always": true,
"commands": [".*"]
},
"stages": ["prestart"]
}
Step 3: Rootless Containers Setup¶
To be able to run rootless containers with podman
, we need the following configuration change to the NVIDIA runtime:
$ sudo sed -i 's/^#no-cgroups = false/no-cgroups = true/;' /etc/nvidia-container-runtime/config.toml
Note
If the user running the containers is a privileged user (e.g. root
) this change should not be made and will cause
containers using the NVIDIA Container Toolkit to fail.
Step 4: Running Sample Workloads¶
We can now run some sample GPU containers to test the setup.
Run
nvidia-smi
$ podman run --rm --security-opt=label=disable \ --hooks-dir=/usr/share/containers/oci/hooks.d/ \ nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
which should produce the following output:
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla T4 Off | 00000000:00:1E.0 Off | 0 | | N/A 46C P0 27W / 70W | 0MiB / 15109MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
Run an FP16 GEMM workload on the GPU that can leverage the Tensor Cores when available:
$ podman run --rm --security-opt=label=disable \ --hooks-dir=/usr/share/containers/oci/hooks.d/ \ --cap-add SYS_ADMIN nvidia/samples:dcgmproftester-2.0.10-cuda11.0-ubuntu18.04 \ --no-dcgm-validation -t 1004 -d 30
You should be able to see an output as shown below:
Skipping CreateDcgmGroups() since DCGM validation is disabled CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR: 1024 CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT: 40 CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR: 65536 CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR: 7 CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR: 5 CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH: 256 CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE: 5001000 Max Memory bandwidth: 320064000000 bytes (320.06 GiB) CudaInit completed successfully. Skipping WatchFields() since DCGM validation is disabled TensorEngineActive: generated ???, dcgm 0.000 (27334.5 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27795.5 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27846.0 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27865.9 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27837.6 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27709.7 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27615.3 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27620.3 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27530.7 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27477.4 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27461.1 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27454.6 gflops) TensorEngineActive: generated ???, dcgm 0.000 (27381.2 gflops)